Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.

نویسندگان

  • Jana Engeldinger
  • Manfred Richter
  • Ursula Bentrup
چکیده

The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFT investigations for the reaction mechanism of dimethyl carbonate synthesis on Pd(II)/β zeolites.

Density functional theory (DFT) calculations have been used to investigate the oxidative carbonylation of methanol on Pd(II)/β zeolite. Activation energies for all the elementary steps involved in the commonly accepted mechanism, including the formation of dimethyl carbonate, methyl formate and dimethoxymethane, are presented. Upon conducting the calculations, we identify that the Pd(2+) cation...

متن کامل

The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y

The mechanism of dimethyl carbonate (DMC) synthesis from oxidative carbonylation of methanol over Cu-exchanged Y zeolite has been investigated using in situ infrared spectroscopy and mass spectrometry under transient-response conditions. The formation of DMC is initiated by reaction of molecularly adsorbed methanol with oxygen to form either monoor di-methoxide species bound to Cu+ cations. Rea...

متن کامل

Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite

The aim of this work was to establish the effects of zeolite structure/chemical composition on the activity and selectivity of Cu-exchanged Y (Si/Al = 2.5), ZSM-5 (Si/Al = 12), and Mordenite (Si/Al = 10) for the oxidative carbonylation of methanol to DMC. Catalysts were prepared by solid-state ion-exchange of the H-form of each zeolite with CuCl and were then characterized by FTIR and X-ray abs...

متن کامل

The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate.

Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were de...

متن کامل

A Theoretical Investigation of Dimethyl Carbonate Synthesis on Cu-Y Zeolite

A theoretical analysis of the mechanism of dimethyl carbonate (DMC) synthesis via oxidative carbonylation of methanol on Cu-exchanged Y zeolite, Cu-Y, was explored using density functional theory. These calculations show that methanol adsorbs in the presence of oxygen to form coadsorbed methoxide and hydroxide species and dimethoxide species on extraframework Cu+ cations. DMC can form by CO add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2012